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To play it safe, I am limiting this paper to a short nar
ration on the use of statistics in nuclear agricultural research
rather than to all of nuclear research. However, in doing so
I might actually cover most of the statistics used in nuclear
research. Actually, statistical methods needed in, nuclear
research are almost identical with those used in non-nuclear
research. Also, agricultural research because of its very nature
has to use statistical methods more than chemical research,
for example.

One big difference between conoentiono; agricultural re
search and nuclear agricultural research is the involvement
of the latter with radioisotopes. In fertilizer experiments, this
means taking data on the activity of the sample ion counts per
minutes which proportionately reflects the number of atomic
disintegrations or the number of radioactive atoms that decay.
There are several instruments used in counting; unfortunately,
I am not familiar with the uses, characteristics, advantages
and disadvantages of each. For our purpose, it is enough to
realize that an atom either disinteqraie« or doee not disinte
grate. Hence, radioactivity should follow a binomial distribu
tion. The probability (P) of any set of x atoms disintegrating
is given in the following equation:

x N-x
P(x) = ----- p q

where
x! eN-x)!

N = total number of atoms
q = probability of the remaining (N-x) atoms

not disintegrating.

* Nuclear Research Supervisor, Agricultural Research Division, PAEC
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The mean of the bionomial distribution is Np ; the variance
is N}:q.

. If p is small and N tends to infinity, the binomial dis
trihuticn is approximated by the Poisson distribution given as
follows: . .' .' .

mx -m
P(x) . -- e

.,
•
•

•
where

Xl

m = the mean rate of disintegration of x atoms •
In the Poisson distribution, m = Np = variance. The decay
of radioactive atoms which .is completely random and indepen
dent of' any other event, temperature and pressure is very well
described OlY' the Poisson distribution. As a consequence, a
single count may be taken as 'an estimate of the mean, pro
vided counting time is sufficiently long.

. The Poisson distribution is often cumbersome to use and
is, therefore, literally poison to simple ...minded people .like us
who are not statisticians'. Thus, it is always tempting to as
sume that m is large enough to warrant the shift to our be
loved nor:mal distribution (mathematically described by the
Gaussian distribution). Pearson'schi-square test may be used
to determine the significance of the disagreement between the
standard deviation computed assuming a Poisson distribution
and that computed assuming a normal distribution. The ideal
'Value ofP from -the chi-square test is 0.5 but a range of 0.1
to 0.9 is acceptable, If P is less than .0.2 or greater than 0.98,
something must have gone wrong. It is therefore advisable
to .repeat the measurements or to examine the counting ap
paratus for possible malfunction.

. Certain .experimental values obtained may be rej ected .if
they-differ from the mean by -three standard deviations. .An
alternative procedure in rejecting values is provided by Chauoe
net's criterion which I will not elaborate on here. .

Assuming a normal distribution, one can determine the
number of counts that should be attained to obtain a certain
level of accuracy by using the' following formula:
... ;.' ....
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where, i = counts needed to obtain, a relative deviation, Sp
which must be specified, for example, asl%o~ 0.01. ,

Relative deviation, Sr, may be computed from experimental
data as follows:

.. 'Sr = '~
x

where, S = standard deviation
x = mean of the experiment

Relative deviation, obviously, is the coefficient of variation
expressed in decimals, rather than percentage.

. ," .. - . ~

'. In radioactivity counting, two variables are actually in
volved. These are (1) the sample count and (2) the back
gr'Ou'YId count, The background count originates from the
existing natural radioactivity in the environment. This is a

. variable by itself rather than a source of error such as soil
'. heterogeneity. In other words, each count is the sum ,of the

, background count (xs ) and the sample count, (xs), or x, +b =='. . . . ~ .'
x, + ~b and x s + bl =' xs + Xb .' The background count can be'

obtained directly with the use of the counting instrument while
the sample count can obviously be obtained br difference.

Let us recall that these measurements follow a Poisson
distribution ; therefore, population mean 'M = population va-

:ri~ce a 2, or sa~~le mean, x= sample variance, ~2 .and x ±..;=i
is the sample mean plus or minus the standard deviation. Each
count or Imean count' should be corrected for background radio-:

.activity." ' ,

The one-standard deviation counting range of sample an~.

'oackground count is given as:

: Rs'+b ±vis:+~ ='Xs+?t± VXstb = XS+b ±'A-tb s'

," ts+,b ts+b '" ts+b .' 5 +b
where,

_. Rs+b = uncorrected counting rate (count per unit time)
x5 +b = uncorrected count
t5+ b = time during which count (sample plus background)

was taken ,



IBARRA S. SANTOS'

-
Xb = background
t b = time during which background' count was taken

and,

R + r;:1S1 - t&u x~ +a - V'" - - - -ts + b tb

where,

R, = sample counting rate

It is generally difficult to measure correctly a sample
counting rate that is less than or equal to the background
counting rate unless the latter is unduly large. Experiments
should be planned to obtain a sample counting' rate that is
at least about ten times that of the background counting rate.
The times spent in determining the background counting 'rate

'and the total (sample plus background) counting rate -need
not be the same. Ideally, the relative amount of time spent
in counting is in inverse proportion to the square root of the
counting rates, as indicated in the following equation: .' '.

t s + b ~-;- = --;::::;;;==::=:.
" ~ RS + b ,

. Generally, since background activitiy is much lower than sample
, activity, a Iongel' time is needed in determining the background
counting rate to obtain the same degree of pr-ecision.

At the risk of giving unnecessary details, I represented the
, preceding account of the etatistic» of accoumiina because in no
other field of research or endeavor is m:lioactvvity involved.

, ' ,

Let me now go into other aspects of nuclear agricultural
research. As already mentioned earlier, there is hardly any
difference between conventional agricultural research and nu
clear agricultural research when it comes to the use of sta
tistics. In greenhouse experiments, one still has the usual
choice between the completely randomized design and random
ized complete-block design, depending on the absence or pre
scnce of an environmental (light, wind, etc.) ,gradient. In
most field experiments, the usual choice is the randomized
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complete-block design. When there are only a few and the
environmental gradient in the field goes into two directions
perpendicular to e3C1h other, the Latin square design should be
used although not many agricultural researchers take advan
tage of the usefulness of this design under those given condi
tions.

In nuclear entomology and food irradiation researches,
either the completely randomized design or the randomized
complete-block design is commonly used. The only notable
thing in these two fields of research is the use of data trans
formation prior to the analysis of variance due to (a) the
presence of several 0 data, (b) percentages ranging from 0
to 100 (or outside the 30 to 7'00/0 range) and (c) large
differences in the "plot" values. The beloved Gaussian or
normal distribution is also utilized in nuclear entomology ins
tead of either the binomial or the Poisson distribution inspite
of the fact that the variates are not continuous; that is, an
egg either hatches 0·1' does not hatch ora larva, pupa or adult
insect either dies or survives after having received a certain
dose of ionizing radiation. Similarly, in food irradiation fruit
either rots or does not rot wthin a given period of time.

Lattices and other incomplete designs are difficult to
handle. Data analysis is difficult when there are several mis
sir:g plots. Hence, the aversion of most agricultural research
ers to incomplete block designs is very understandable.

However, there is one incomplete block design (Gallant
and Everett, 1949) very similar to a 3 x 3 balanced lattice
design which we have been using in our eating-quality tests
at the Agricultural Research Division during the last eight
years. In our mutation breeding, we are most particular about
ending up with a food variety that is excellent in eating qua
lity, even if the yield potential is not the best available but
zood enough. This is in contrast to the breeding philosophy
in other research institutions concerned with plant breeding.
This, I believe, is a healthy and desirable divergence for then
the farmers will have a wider choice of varieties' to plant.

One would not realize the utility of this design in eating
quality tests unless nne has actually tried comparing and rating
more than three items> at a time. To rank accurately five
items at one time is an impossible task to me. I can say
this because with only three test items to rank first, second
and third I had to take at least ten minutes. I, therefore,
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believe very strongly that not more than three items should
be served to a taster at any given time.

The above-mentioned design has that feature. With only
nine entries (one or more entries may be duplicated to make
nine entries if less than nine entries are available) , each entry
is compared with two other entries in four incomplete blocks.
There are twelve such incomplete blocks in each experiment.
Each incomplete block is repeated four times. A minimum
of four tasters is therefore necessary. The same four tasters
or any number of tasters between four and forty-eight may
be used to carry out the test on all twelve incomplete blocks.
If 48 tasters are available, each of the twelve incomplete blocks
is evaluated ty a different set of four tasters.

Each entry is evaluated 16 times in the experiment since'
each of the four incomplete blocks to which it is included is
given for evaluation to four different tasters. A ranking of
first earns an entry a score of 0.85; a ranking of second, 0,;
and a ranking of third, a minus 0.85. No ties are allowed
even if two entries happen to taste exactly the same. The
highest possible score is 0.815 x 16 = 13.60; the highest pos
sible negative score is -13.60. The minus entries may then
be arranged in an array from the highest positive score down
to the highest negative score. A just significant difference
(j.s.d.) may be computed and applied to determine signif i:-

cance of differences. In practice though, hardly any difference
even between the best and the worst-tasting entries turns out
to be significant even though one can swear to the difference
in eating quality between those two entries, Hence, for prac
tical purposes the array itself and the total score of each,
entry are very useful in comparing relative eating of. the,
9 entries. The inclusion of a standard (or control) variety
in the 9-entry test contributes tremendously to the usefulness
of the test. Also, the size of the j.s.d. .gives us an indica
tion cf whether or not something went wrong with the con
duct of the test or of the statistical analysis.

I now corne to an example to show how statistics is used
in conventional breeding or genetics and in mutation breeding.
A conventional breeder makes a cross between two parents
with contrasting characters governed by a single pair of genes.
He is interested in recovering the recessive trait (probably
disease resistance) in the second generation. The probability
of anyone plant being of that recessive trait is 1/4. The
probability of any one plant not being of that recessive traip
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~.is :3/4. If he saves only one plant from the second genera
: tion population the probability of failure is. 3/4 or 0.75. If he
"saves" two plants, the probability of failure is (3/4)2 01'
'0.5625; three plants, (3/4)3 or 0.4219; four plants, (3/4)4, or
0.3164; five plants, 0.2373; six plants, 0.1780;' and ten plants,
.0561. Probability of failure, of course, goes down as the
number of plants saved is ircreased. One has to save about
eleven plants to have a prot abillty of failure of less than .05,
our most worshipped probability level.

'!', :'In the induction of a particular mutation desired, the
'es"timate of success may l:e one in 1,000; one in 10,000; one
-in 100iQ.OOor may be one in 1,0100,000.. Assuming it is one
in 1,00'0 one has a probability of failure 0:( (999/1,000) 10,000
= .000435 if he grows 10,000 plants. This probability of failure
j&: very low and if one is willing to have a probability of failure
of. P = ·0.10 then N or the number of plants to be grown can
1,J.~~ computed as follows:

•
•

..
• o}

......:"{

999 N
P ~ ( . ). = 0.10

1000
N log 0.999 -:- log 0.10

log .10
'N = . =.229

log 0.999

•

~•.
...

However, if one is looking for a particulJa1' mutaiio» the
probability of S\;ctHS is closer to one in 10;0,000 than to' one
in 1,000 in most cases, Therefore, the number of second
generation plants needed to be grown to have a good chance
of obtaining a desired mutation is usually very large. The
mutation breeder just grows the number (about 10,0i00) he
can afford to growand then keeps his fingers crossed. How
ever, the single-cell approach is now being put to use to in
crease the probaibi'lity of recovering mutations and hence, the
probability of recovering the mutation breeder will need the
use of a field with uniform soil to enable him to identify cer
tain types of mutations.

Statistics as applied in agricultural research Including
nuclear agricultural research, is a useful tool. For one thing
it impresses on us the importance of raouiomizoiiov: if conclu
sions are to be valid. For another thing, it keeps reminding
us of the concept of prob'abily/;y. We should, however, not
overlook the importance of the control ualue in evaluating re-
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sults of experiments. Also, since many assumptions under
lying most statistical procedures are not fulfilled, we should
never surrender completely our common sense and intuition
(most probably Lased cn experience) . in interpreting results
of experiments.
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